Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis[(μ-cyclopentylamino- N : N)dimethylaluminium(III)]

Fiona J. Craig, Alan R. Kennedy* and Robert E. Mulvey

Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
Correspondence e-mail: a.r.kennedy@ccsun.strath.ac.uk
Received 2 September 1999
Accepted 4 October 1999
Reaction of AlMe_{3} with $\mathrm{NH}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{9}\right)$ caused the evolution of methane and produced the dimeric species bis (μ-cyclo-pentylamino- N : N) bis[dimethylaluminium(III)], $\quad\left[\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}\right)\right]_{2}$, which was found to adopt a cis configuration of cyclopentyl groups about a bent AINAIN ring (which has twofold crystallographic symmetry) instead of the more common trans arrangement.

Comment

Diorganoaluminium amides $\left[R_{2} \operatorname{AlN}(\mathrm{H}) R^{\prime}\right]$, where the amide function derives from a primary source $R^{\prime} \mathrm{NH}_{2}$, have proved useful synthetically in providing access to a range of more exotic organoaluminium compounds and structures. This chemistry centres on the reactivity of the remaining $\mathrm{N}-\mathrm{H}$ bond, and the products obtained are markedly dependent on the nature of the R^{\prime} substituent (Waggoner \& Power, 1991). The structures of these primary amides have also attracted considerable attention in their own right. It has been established that in amide-bridged dimeric systems larger organic R ligands bound to Al favour a configuration with mutually cis, rather than mutually trans, R^{\prime} groups (Schaur et al., 1992). Thus, when R is methyl a trans arrangement is favoured and indeed only three cis examples have been documented. A mixture of both configurations cocrystallizing in a $2: 1$ trans:cis ratio was found for $R^{\prime}=$ isopropyl (Amirkhalili et al., 1981) and the cis isomer is also known from two cases where R^{\prime} is chiral, -CHMePh (Robinson et al., 1988) or -CHMe(naphthyl) (Pennington et al., 1990). It has been suggested that in the latter cases the cis configuration is adopted as the $2 / m$ geometry shown by the trans isomer is not accessible for optically active compounds whilst the cis configuration still allows the largest substituents on R^{\prime} to be mutually trans. It was reported that no interconversion of the isomers was found in solution. It is hence of interest here that the crystal structure of the cycloalkylamide $\left[\mathrm{Me}_{2} \mathrm{Al}\left\{\mu-\mathrm{N}(\mathrm{H}) R^{\prime}\right\}_{2} \mathrm{AlMe}_{2}\right]$, (I), where R^{\prime} is a simple cyclopentyl group, shows it to adopt only the cis configuration.

The two halves of dimeric (I) are related by a twofold rotation axis. The AlNAIN ring is bent about the Al $\cdots \mathrm{Al}$ vector ($\mathrm{Al} 1-C p-\mathrm{Al} 1^{*} 171.5^{\circ}$, where $C p$ is the ring centroid) as are the three other known cis isomers (range 170.6 to 172.7°). The cyclopentyl groups lie endo with respect to this fold and adopt an envelope configuration with N 1 as an

(I)
equatorial substituent. In contrast, the known trans isomers have planar AINAIN rings with two exceptions where R^{\prime} is excessively large [$R^{\prime}=$ biphenyl (Byers et al., 1992); $R^{\prime}=2,6-$ diisopropylphenyl (Waggoner \& Power, 1991)]. The aluminium centre is pseudo-tetrahedral with the largest deviation from ideal geometry being the closure of the internal ring angle $\mathrm{N} 1-\mathrm{Al} 1-\mathrm{N} 1^{*}$ to $86.8(1)^{\circ}$. This is compensated for by separating the methyl groups and thus $\mathrm{C} 1-\mathrm{Al} 1-\mathrm{C} 2$ expands to $120.6(2)^{\circ} . \mathrm{N} 1$ is also pseudo-tetrahedral (as opposed to the flat CNAl_{2} fragment found for $R^{\prime}=2,6$-diisopropylphenyl above) and subtends an endocyclic ring angle of $92.0(1)^{\circ}$. There are no intermolecular contacts significantly shorter than the sum of the van der Waals radii.

Figure 1
An ORTEP view of (I) with ellipsoids at the 40% probability level and H atoms shown as small spheres of arbitrary size. [Symmetry code: (i) $1-y$, $1-x, \frac{1}{2}-z$.]

Experimental

Synthesis was carried out by adaption of the deprotonation/alkane elimination method of Waggoner \& Power (1991). A suitable crystal was obtained from toluene solution and mounted in a glass capilliary.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\right]} \\
& M_{r}=282.38 \\
& \text { Tetragonal, } P 4_{1} 2_{1} 2 \\
& a=12.380(2) \AA \\
& c=12.018(3) \AA \\
& V=1841.9(7) \AA^{3} \\
& Z=4 \\
& D_{x}=1.018 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 16 reflections
$\theta=10.6-13.7^{\circ}$
$\mu=0.147 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, colourless
$0.42 \times 0.40 \times 0.35 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer $\omega / 2 \theta$ scans
2580 measured reflections
2133 independent reflections
1225 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.50^{\circ}$

Refinement

Refinement on F
$R=0.046$
$w R=0.046$
$S=1.408$
1225 reflections
86 parameters

$$
\begin{aligned}
& h=-16 \rightarrow 16 \\
& k=-10 \rightarrow 11 \\
& l=-15 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 1.12 \%
\end{aligned}
$$

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 / \sigma^{2}(F)$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.23$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Al1-N1	1.943 (3)	Al1-C1	1.957 (4)
Al1-N1 ${ }^{\text {i }}$	1.956 (3)	Al1-C2	1.959 (4)
$\mathrm{N} 1-\mathrm{Al} 1-\mathrm{N} 1^{\mathrm{i}}$	86.8 (1)	$\mathrm{C} 1-\mathrm{Al} 1-\mathrm{C} 2$	120.6 (2)
N1-Al1-C1	111.6 (2)	$\mathrm{Al} 1-\mathrm{N} 1-\mathrm{Al1}{ }^{\text {i }}$	92.0 (1)
N1-Al1-C2	109.9 (2)	$\mathrm{Al1}-\mathrm{N} 1-\mathrm{C} 3$	121.3 (2)
N1 ${ }^{\text {i }}$ - Al1-C1	112.2 (1)	$\mathrm{Al1}{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 3$	121.1 (2)
N1 ${ }^{\text {i }}$ - Al1 - $\mathrm{C}^{\text {2 }}$	110.7 (1)		

Symmetry code: (i) $1-y, 1-x, \frac{1}{2}-z$.

The amide-H atom was refined isotropically $[\mathrm{N}-\mathrm{H} 0.80$ (3) \AA] and all other H atoms were placed in idealized positions. Reflections and their Friedel mates were collected but no reliable conclusion could be reached as to the absolute configuration.

Cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1985); data reduction: TEXSAN (Molecular Structure Corporation, 1993); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

We thank the EPSRC for providing a studentship to FJC.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1061). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Amirkhalili, S., Hitchcock, P. B., Jenkins, A. D., Nyathi, J. Z. \& Smith, J. D. (1981). J. Chem. Soc. Dalton Trans. pp. 377-380.

Byers, J. J., Lee, B., Pennington, W. T. \& Robinson, G. H. (1992). Polyhedron, 11, 967-972.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1985). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993). TEXSAN. Single Crystal Structure Analysis Package. Version 1.6. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Pennington, W. T., Robinson, G. H. \& Sangokoya, S. A. (1990). Acta Cryst. C46, 1108-1110.
Robinson, G. H., Sangokoya, S. A. \& Rogers, R. D. (1988). Polyhedron, 7, 2727-2730.
Schaur, S. J., Pennington, W. T. \& Robinson, G. H. (1992). Organometallics, 11, 3287-3292.
Waggoner, K. M. \& Power, P. P. (1991). J. Am. Chem. Soc. 113, 3385-3393.

